Postmovement changes in the frequency and amplitude of physiological tremor despite unchanged neural output.

نویسندگان

  • Raymond Reynolds
  • Martin Lakie
چکیده

Active or passive movement causes a temporary reduction in muscle stiffness that gradually returns to baseline levels when the muscle remains still. This effect, termed muscle thixotropy, alters the mechanical properties of the joint around which the muscle acts, reducing its resonant frequency. Because physiological tremor is affected by joint mechanics, this suggests that prior movement may alter tremor independently of neural output. To address this possibility, vertical acceleration of the outstretched prone hand was recorded in eight healthy subjects, along with EMG activity of the extensor digitorum communis muscle. A series of voluntary wrist flexion/extension movements was performed every 20 s, interspersed by periods during which hand position was maintained. Time-dependent changes in the amplitude and frequency of acceleration and EMG were analyzed using a continuous wavelet transform. Immediately following movement, acceleration displayed a significant increase in wavelet power accompanied by a reduction in peak frequency. During the postmovement period, power declined by 63%, and frequency increased from 7.2 to 8.0 Hz. These changes occurred with an exponential time constant of 2-4 s, consistent with a thixotropic mechanism. In contrast to acceleration, EMG activity showed no significant changes despite being strongly related to acceleration during the movement itself. These results show that prior movement transiently increases the amplitude and reduces the frequency of physiological tremor, despite unchanging neural output. This effect is best explained by a reduction in joint stiffness caused by muscle thixotropy, highlighting the importance of mechanical factors in the genesis of physiological tremor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Post - movement changes in the frequency and amplitude of 1 physiological tremor despite unchanged neural output

22 Active or passive movement causes a temporary reduction in muscle stiffness which 23 gradually returns to baseline levels when the muscle remains still. This effect, 24 termed muscle thixotropy, alters the mechanical properties of the joint around 25 which the muscle acts, reducing its resonant frequency. Since physiological tremor is 26 affected by joint mechanics, this suggests that prior ...

متن کامل

The nature of tremor circuits in parkinsonian and essential tremor

Tremor is a cardinal feature of Parkinson's disease and essential tremor, the two most common movement disorders. Yet, the mechanisms underlying tremor generation remain largely unknown. We hypothesized that driving deep brain stimulation electrodes at a frequency closely matching the patient's own tremor frequency should interact with neural activity responsible for tremor, and that the effect...

متن کامل

Electrophysiological investigation of the cellular effect of anethole, the chief constitute of anise, on F1 neuronal excitability in garden snail

Introduction: Anethole is the main constituent of Pimpinella anisum L. (anise), a herbaceous annual plant which has several therapeutic effects. In the folk medicine, anise is employed as an antiepileptic drug. Specifically, this study was focused on the cellular effect of anethole, an aromatic compound in essential oils from anise and camphor. Anethole has various physiological effects on t...

متن کامل

JN-01218-2004.R1 - Aging and Tremor Regularity Effects of Aging on the Regularity of Physiological Tremor

The purpose of this investigation was to determine the effects of healthy aging on the regularity of physiological tremor under rest and postural conditions. Additionally, we examined the contribution of mechanical reflex factors to age related changes in postural physiological tremor. Tremor regularity, tremor-EMG coherence, tremor amplitude, and tremor modal frequency were calculated for four...

متن کامل

Movement induced tremor in musicians and non-musicians reflects adaptive brain plasticity

Evidence exists that motor dexterity is associated with a higher tremor amplitude of physiological tremor. Likewise, lower frequencies are associated with motor control. So far only case reports of a higher amplitude of physiological tremor in musicians exist. Moreover, no study has investigated lower frequencies during a finger movement task in musicians who can be regarded as a model of motor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 104 4  شماره 

صفحات  -

تاریخ انتشار 2010